The Design of Temperature-Responsive Nanofiber Meshes for Cell Storage Applications

نویسندگان

  • Tomohiro Maeda
  • Young-Jin Kim
  • Takao Aoyagi
  • Mitsuhiro Ebara
  • Stephen C. Bondy
چکیده

Here we report on the fabrication and characterization of temperature-responsive electrospun nanofiber meshes using N-isopropylacrylamide homopolymer (PNIPAAm). The effect of molecular weight on fiber formation and their thermoresponsive shrinking/dissolution behaviors were investigated. The PNIPAAm fiber meshes showed much faster temperature-dependent shrinking or dissolution than that of its corresponding film due to its unique fibrous structure. By utilizing these quick and dynamic shrinking/dissolution properties, we successfully demonstrated the temperature-modulated “on-off” capture/release systems for macroscopic or mesoscopic-scale objects. Finally, we explored the potential application of PNIPAAm meshes for cell storage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving cell infiltration limitations of electrospun nanofiber meshes for tissue engineering applications.

AIM Utilize the dual composition strategy to increase the pore size and solve the low cell infiltration capacity on random nanofiber meshes, an intrinsic limitation of electrospun scaffolds for tissue engineering applications. MATERIALS & METHODS Polycaprolactone and poly(ethylene oxide) solutions were electrospun simultaneously to obtain a dual composition nanofiber mesh. Selective dissoluti...

متن کامل

Facile Functionalization of Electrospun Poly(ethylene-co-vinyl alcohol) Nanofibers via the Benzoxaborole-Diol Interaction

A facile functionalization method of poly(ethylene-co-vinyl alcohol) (EVOH) nanofiber meshes was demonstrated by utilizing the benzoxaborole-diol interaction between EVOH and benzoxaborole-based copolymers (BOP). EVOH and BOP were firstly mixed to prepare the quasi-gel-state solution with enough viscosity for electro-spinning. The fiber morphology was controlled via changing the mixing ratio of...

متن کامل

The Role of Biodegradable Engineered Nanofiber Scaffolds Seeded with Hair Follicle Stem Cells for Tissue Engineering

Background: The aim of this study was to fabricate the poly caprolactone (PCL) aligned nanofiber scaffold and to evaluate the survival, adhesion, proliferation, and differentiation of rat hair follicle stem cells (HFSC) in the graft material using electrospun PCL nanofiber scaffold for tissue engineering applications. Methods: The bulge region of rat whisker was isolated and cultured in DMEM: n...

متن کامل

Patterning of polymer nanofiber meshes by electrospinning for biomedical applications

The end-product of the electrospinning process is typically a randomly aligned fiber mesh or membrane. This is a result of the electric field generated between the drop of polymer solution at the needle and the collector. The developed electric field causes the stretching of the fibers and their random deposition. By judicious selection of the collector architecture, it is thus possible to deve...

متن کامل

Development of antimicrobial chitosan based nanofiber dressings for wound healing applications

Objective(s): Chitosan based composite fine fibers were successfully produced via a centrifugal spinning technology. This study evaluates the ability of the composites to function as scaffolds for cell growth while maintaining an antibacterial activity. Materials and methods: Two sets of chitosan fiber composites were prepared, one filled with anti-microbial silver nanoparticles and another on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017